On Using Collocation in Three Dimensions and Solving a Model Semiconductor Problem
نویسنده
چکیده
A research code has been written to solve an elliptic system of coupled nonlinear partial differential equations of conservation form on a rectangularly shaped three-dimensional domain. The code uses the method of collocation of Gauss points with tricubic Hermite piecewise continuous polynomial basis functions. The system of equations is solved by iteration. The system of nonlinear equations is linearized, and the system of linear equations is solved by iterative methods. When the matrix of the collocation equations is duly modified by using a scaled block-limited partial pivoting procedure of Gauss elimination, it is found that the rate of convergence of the iterative method is significantly improved and that a solution becomes possible. The code is used to solve Poisson's equation for a model semiconductor problem. The electric potential distribution is calculated in a metal-oxide-semiconductor structure that is important to the fabrication of electron devices.
منابع مشابه
Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملSemiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)
In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملA New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems
In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...
متن کاملA Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations
In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...
متن کامل